Statistics Session List
5 Years, 10 Sprints, A scikit-learn Open Source Journey
Reshama Shaikh
Community, Science, StatisticsIn this keynote, I will share highlights, challenges and lessons learned. (https://www.dataumbrella.org/sprints).
Detecting drift: how to evaluate and explore data drift in machine learning systems
Emeli Dral
Best Practice, Data Visualization, StatisticsWhen ML model is in production, you might encounter data and prediction drift. How exactly to detect and evaluate it? I'll share in this talk.
Honey, I shrunk the target variable! Common pitfalls when transforming the target variable and how to exploit transformations.
Florian Wilhelm
Math, Predictive Modelling, StatisticsHoney, I shrunk the target variable! Common pitfalls when transforming the target variable and how to exploit transformations.
Inpsect and try to interpret your scikit-learn machine-learning models
Guillaume Lemaitre
Predictive Modelling, Statistics, Transparency / InterpretabilityInspect and try to interpret your scikit-learn machine-learning models
Introduction to Uplift Modeling
Dr. Juan Orduz
Algorithms, Predictive Modelling, StatisticsIn this talk we introduce uplift modelling, a method to estimate conditional average treatment effects (CATE) using machine learning estimators.
My forecast is better than yours! What does that even mean?
Illia Babounikau
Statistics, Time SeriesEstablished forecast evaluation procedures often turn out to be inappropriate and biased for modern time series forecasting. I will present the number of forecast evaluations issues and resolutions based on the real use cases of demand forecasting developed within BlueYonder.
Performing Content: Can NLP and Deep Learning algorithms predict reader preferences?
Sebastian Cattes
Natural Language Processing, Neural Networks / Deep Learning, StatisticsCan AI understand what drives user engagement? Join our talk "Performing Content: Can NLP and Deep Learning algorithms predict reader preferences?" to find out what NLP can bring to the editorial table.
Predictive Maintenance and Anomaly Detection for Wind Energy
Tobias Hoinka
Predictive Modelling, Statistics, Time SeriesThis talk will describe predictive modeling applications in wind turbine maintenance, the challenges of anomaly detection and ways to move to more automatic diagnoses by modeling past documented defects.
Filter